Extended Target Tracking using a Gaussian-Mixture PHD filter

نویسندگان

  • Karl Granström
  • Christian Lundquist
  • Umut Orguner
چکیده

This paper presents a Gaussian-mixture implementation of the PHD filter for tracking extended targets. The exact filter requires processing of all possible measurement set partitions, which is generally infeasible to implement. A method is proposed for limiting the number of considered partitions and possible alternatives are discussed. The implementation is used on simulated data and in experiments with real laser data, and the advantage of the filter is illustrated. Suitable remedies are given to handle spatially close targets and target occlusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering

In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood functi...

متن کامل

Extended Target Tracking with a Cardinalized Probability Hypothesis Density Filter, Report no. LiTH-ISY-R-2999

This technical report presents a cardinalized probability hypothesis density (CPHD) lter for extended targets that can result in multiple measurements at each scan. The probability hypothesis density (PHD) lter for such targets has already been derived by Mahler and a Gaussian mixture implementation has been proposed recently. This work relaxes the Poisson assumptions of the extended target PHD...

متن کامل

A Gaussian Mixture PHD filter for Extended Target Tracking, Report no. LiTH-ISY-R-2956

In extended target tracking, targets potentially produce more than one measurement per time step. Multiple extended targets are therefore usually hard to track, due to the resulting complex data association. The main contribution of this paper is the implementation of a Probability Hypothesis Density (phd) lter for tracking of multiple extended targets. A general modi cation of the phd lter to ...

متن کامل

Extended Target Tracking using a Gaussian-Mixture PHD filter, Report no. LiTH-ISY-R-3028

This paper presents a Gaussian-mixture implementation of the PHD lter for tracking extended targets. The exact lter requires processing of all possible measurement set partitions, which is generally infeasible to implement. A method is proposed for limiting the number of considered partitions and possible alternatives are discussed. The implementation is used on simulated data and in experiment...

متن کامل

Probability Hypothesis Density Filter Based Design Concept: A Survey for Space Traffic Modeling and Control

The Probability Hypothesis Density (PHD) filter has been recently received a lot of attention by the estimation and data fusion community for its ability to provide a useful solution to the Bayesian filter problem (i.e., implementation issue). Its core foundation to other parallel directions, such as the Sequential Monte Carlo PHD, the Gaussian Mixture PHD and others, offers a viable path to pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011